\qquad
\qquad
\qquad

Fractions II Study Guide

*Please show all your work when applicable. Don't just write answers. *Remember to reduce all fractions to their lowest form.

I. Mixed Fractions and Improper Fractions

1.) Write a mixed number for the following improper fractions.
a. $\frac{22}{4} 5^{2} / 4 \rightarrow 5^{1 / 2}$
b. $\frac{56}{5}, 11.1 / 5$
2.) Write an improper fraction for the following mixed fractions.
a. $4 \frac{3}{5} \quad 23 / 5$
b. $5 \frac{3}{7}$
$38 / 7$

II. Writing a fraction as a sum of fractions.

3.) Write $\frac{23}{17}$ as a sum of 4 fractions.
answers will vary two possible answers:

$$
20 / 17+1 / 17+1 / 17+1 / 17 \text { or } 15 / 17+3 / 17+4 / 17+1 / 17
$$

4.) Find another way to answer number 3 ?
(answers will vary)... $5 / 17+6 / 17+8 / 17+2 / 17$ or $3 / 17+3 / 17+9 / 17+14 / 17$
all the equations sum up to $23 / 17$

III. Operations with Fractions.

5.) Alicia, Mindy, and Ryan B. ate chocolate cake for dessert. Alicia ate $\frac{1}{2}$ of the cake, Mindy ate $\frac{3}{16}$ of the cake, and Ryan ate $\frac{2}{8}$ of the cake. How much of the cake is left over, assuming it was originally sliced into 16 pieces? There is
\qquad of the cake left over.

Find 16 as a common denominator for your fractions.
Use the model below to show how much of the cake was eaten. $\quad 8 / 16+3 / 16+4 / 16=15 / 16$

A	A	M	M
A	A	M	
A	A	R	R
A	A	R	R

$1 / 16$ of the cake or 1 piece is left over
6.) Corey bought $41 / 2$ gallons of milk for a party at school. Ryan T. purchased $21 / 2$ gallons of milk for that week's breakfast. . How much milk did the two boys purchase all together?

$$
4^{1 / 2}+2^{1 / 2}=6^{2} / 2 \rightarrow 7 \text { gallons }
$$

7.) A recipe calls for $5 \frac{3}{4}$ cups of sugar while a second recipe calls for $3 \frac{1}{4}$ cups of sugar. How many less cups of sugar are required in the second recipe compared to the first recipe?

$$
5^{3} / 4-3^{1 / 4}=2^{2 / 4} \rightarrow 2^{1 / 2} \text { cups }
$$

8.) Audrey, Davis, and Tanner ate a pizza for dinner. Audrey ate $1 / 4$ of the pizza, Davis ate $1 / 6$ of the pizza, and Tanner ate $5 / 12$ of the pizza. Draw a model to represent how much of the pizza was eaten.
9.) How much of the pizza did they eat in all? Write an equation to show this.

$$
1 / 4 \rightarrow 3 / 12,1 / 6 \rightarrow 2 / 12,5 / 12 \rightarrow 5 / 12 \quad 3 / 12+2 / 12+5 / 12=10 / 12 \rightarrow 5 / 6
$$

10.) Max has $5 \frac{4}{5}$ pints of ice cream. He and his friends bought an additional $3 \frac{2}{5}$ pints of ice cream. How much ice cream do they have altogether?

$$
5^{4} / 5+3^{2} / 5=8^{6} / 5 \rightarrow 9^{1 / 5 \text { pints }}
$$

11.) $\frac{3}{5}+\frac{1}{5}=4 / 5$
12.) $\frac{22}{25}-9 / 25=\frac{13}{25}$
13.) $6 \frac{7}{9}-2 \frac{1}{9}=\begin{aligned} & 46 / 9 \rightarrow 42 / 3 \text { or } \\ & 61 / 9-19 / 9=42 / 9=46 / 9=42 / 3\end{aligned}$
14.) $\frac{4}{6}-\frac{1}{6}=.3 / 6 \rightarrow^{1 / 2}$
15.) $6 \frac{3}{9}+1 \frac{3}{9}=\begin{aligned} & 76 / 9 \rightarrow 7^{2} / 3 \text { or } \\ & 57 / 9+21 / 9=78 / 9=86 / 9\end{aligned}$
16.) $\frac{3}{7}+6 / 7=1 \frac{2}{7}$ $=8^{2} / 3$
17.) Use the diagram below to answer the following fractions.

a. Write a fraction that represents the shaded region above. $\quad 6 / 14 \rightarrow 3 / 7$
b. Write a fraction that represents the un-shaded region.

$$
8 / 14 \rightarrow 4 / 7
$$

c. Write an equation that represents how many more un-shaded regions there are than shaded regions.

$$
8 / 14-6 / 14=2 / 14 \rightarrow 1 / 7 \quad \text { or } \quad 4 / 7-3 / 7=1 / 7
$$

IV. Modeling Multiplication with Fractions

18.) Write an equation for the model below.

19.) Solve:
a. $10 \times 3 / 5=$ \qquad b. $7 \times \frac{4}{6}=$ \qquad
$10 \rightarrow 10 / 1$
$10 / 1 \times 3 / 5=30 / 5 \rightarrow 6$
$7 \rightarrow 7 / 1 \quad 7 / 1 \times 4 / 6=28 / 6 \rightarrow 44 / 6=42 / 3$
20.) Each member of a relay team runs $1 / 2$ of the track. If there are 6 members in the relay, how many laps do they run altogether?

$$
6 \rightarrow 6 / 1 \quad 1 / 2 \times 6 / 1=6 / 2 \rightarrow 3 \text { laps altogether }
$$

21.) At the first basketball game, the band sold 30 pizzas. At the second game, they sold ${ }^{5} / 6$ more pizza than that they sold at the first game. How much more pizza did they sell at the second game?

$$
\begin{aligned}
& 30 \rightarrow 30 / 1 \quad 30 / 1 \times 5 / 6=150 / 6 \rightarrow 25 \text { more pizzas are sold the } \\
& 2^{\text {nd }} \text { game; } 55 \text { total pizzas were sold during the } 2^{\text {nd }} \text { game }
\end{aligned}
$$

22.) Julie lost ${ }^{9} / 16$ of a pound the first week of her diet. After a month she lost altogether 12 times as many pounds that she lost the first week. How many pounds has she lost?

$$
12 \rightarrow 12 / 1 \quad 12 / 1 \times 9 / 16=108 / 16 \rightarrow 6^{12} / 16 \rightarrow \sigma^{3} / 4 \text { pounds }
$$

23.) Omari had 44 baseball cards. He gave away $1 / 4$ of them. How many cards did he have left?

$$
\begin{aligned}
& 44 \rightarrow 44 / 1 \quad 44 / 1 \times 1 / 4=44 / 4 \rightarrow 11 \text { cards given away } \\
& 44 \text { original cards }-11 \text { given away }=33 \text { cards left }
\end{aligned}
$$

24.) Oscar saved $\$ 360$ mowing lawns one summer. He spent a third of that money on an ipod. He then earned an additional \$50 babysitting. How much money does he have now?

$$
\$ 360 \rightarrow \$ 360 / 1, \text { a third } \rightarrow 1 / 3 \quad \$ 360 / 1 \times 1 / 3=360 / 3 \rightarrow \$ 120 \text { spent on ipod }
$$

$$
(\$ 360-\$ 120)+\$ 50=\$ 290
$$

25.)Solve:
a. $3 \frac{2}{7}-2 \frac{4}{7}=$
b. $4 \frac{5}{6}+\beta=6 \frac{1}{6} \quad \beta=$ \qquad

$$
\beta=\underline{8} \quad \rightarrow 12 / 6
$$

c. Write 2 equivalent fractions for $\frac{3}{7}$. (answers will vary)

V. Spiral Review...be sure you can

identify place value, determine the value of digit in a given number, estimate, perform multi-digit multiplication, and long division, etc......

Show your work. You can also do Mega-Math, LearnZillion, or other math programs.

