Fractions II Study Guide

*Please show all your work when applicable. Don't just write answers. *Remember to reduce all fractions to their lowest form.

Ι. Mixed Fractions and Improper Fractions

- 1.) Write a mixed number for the following improper fractions.
 - b. $\frac{56}{5}$ 11 ¹/₅ a. $\frac{22}{4}$ 5²/₄ \rightarrow 5¹/₂
- 2.) Write an improper fraction for the following mixed fractions.

a.
$$4\frac{3}{5}$$
 23/5 b. $5\frac{3}{7}$ **38**/7

Writing a fraction as a sum of fractions. П.

answers will vary two possible answers: 3.) Write $\frac{23}{17}$ as a sum of 4 fractions. - $\frac{20}{17} + \frac{1}{17} + \frac{1}{17} + \frac{1}{17}$ or $\frac{15}{17} + \frac{3}{17} + \frac{4}{17} + \frac{1}{17}$

4.) Find another way to answer number 3?

(answers will vary)... $\frac{5}{17} + \frac{6}{17} + \frac{8}{17} + \frac{2}{17}$ or $\frac{3}{17} + \frac{3}{17} + \frac{9}{17} + \frac{14}{17}$ all the equations sum up to $\frac{23}{17}$

III. **Operations with Fractions.**

5.) Alicia, Mindy, and Ryan B. ate chocolate cake for dessert. Alicia ate $\frac{1}{2}$ of the cake, Mindy ate $\frac{3}{16}$ of the cake, and

Ryan ate $\frac{2}{9}$ of the cake. How much of the cake is left over, assuming it was originally sliced into 16 pieces? There is of the cake left over. Find 16 as a common denominator for your fractions.

Use the model below to show how much of the cake was eaten. 8/16 + 3/16 + 4/16 = 15/16

Α	Α	М	Μ	
٨	Α	Μ		
٨	Α	R	R	
٨	Α	R	R	

 $\frac{1}{16}$ of the cake or 1 piece is left over

6.) Corey bought 4 ½ gallons of milk for a party at school. Ryan T. purchased 2 ½ gallons of milk for that week's breakfast. . How much milk did the two boys purchase all together?

$4^{1}/_{2} + 2^{1}/_{2} = 6^{2}/_{2} \rightarrow 7$ gallons

7.) A recipe calls for $5\frac{3}{4}$ cups of sugar while a second recipe calls for $3\frac{1}{4}$ cups of sugar. How many less cups of sugar are required in the second recipe compared to the first recipe?

 $5^{3}/_{4} - 3^{1}/_{4} = 2^{2}/_{4} \rightarrow 2^{\frac{1}{2}}$ cups

8.) Audrey, Davis, and Tanner ate a pizza for dinner. Audrey ate $\frac{1}{6}$ of the pizza, and Tanner ate $\frac{5}{12}$ of the pizza. Draw a model to represent how much of the pizza was eaten.

9.) How much of the pizza did they eat in all? Write an equation to show this.

 $\frac{1}{4} \rightarrow \frac{3}{12}, \frac{1}{6} \rightarrow \frac{2}{12}, \frac{5}{12} \rightarrow \frac{5}{12} \rightarrow \frac{3}{12} + \frac{2}{12} + \frac{5}{12} = \frac{10}{12} \rightarrow \frac{5}{6}$

10.) Max has $5\frac{4}{5}$ pints of ice cream. He and his friends bought an additional $3\frac{2}{5}$ pints of ice cream. How much ice cream do they have altogether?

$$5^{4}/_{5} + 3^{2}/_{5} = 8^{6}/_{5} \rightarrow 9^{1}/_{5}$$
 pints

11.) $\frac{3}{5} + \frac{1}{5} = \frac{4}{5}$ 12.) $\frac{22}{25} - \frac{9}{25} = \frac{13}{25}$ 13.) $6\frac{7}{9} - 2\frac{1}{9} = \frac{4}{6}\frac{6}{9} \rightarrow \frac{4}{2}\frac{2}{5}$ or 13.) $6\frac{7}{9} - 2\frac{1}{9} = \frac{4}{6}\frac{6}{9} \rightarrow \frac{4}{2}\frac{2}{5}$

14.)
$$\frac{4}{6} - \frac{1}{6} = \frac{3}{6} \rightarrow \frac{1}{2}$$
 15.) $6\frac{3}{9} + 1\frac{3}{9} = \frac{76}{9} \rightarrow 7^{2}/3 \text{ or}$ 16.) $\frac{3}{7} + \frac{6}{7} = 1\frac{2}{7}$
= $8^{2}/3$

17.) Use the diagram below to answer the following fractions.

- a. Write a fraction that represents the shaded region above.
- b. Write a fraction that represents the un-shaded region.

 $^{8}/_{14} \rightarrow ^{4}/_{7}$

 $^{6}/_{14} \rightarrow ^{3}/_{7}$

c. Write an equation that represents how many more un-shaded regions there are than shaded regions.

 $\frac{8}{14} - \frac{6}{14} = \frac{2}{14} \rightarrow \frac{1}{7}$ or $\frac{4}{7} - \frac{3}{7} = \frac{1}{7}$

IV. **Modeling Multiplication with Fractions**

18.) Write an equation for the model below.

2/3 $\frac{2}{3} \times 2 = \frac{4}{3} \rightarrow 1^{1}/_{3}$

19.) Solve:

a.
$$10 \times \frac{3}{5} =$$

b. $7 \times \frac{4}{6} =$
10 $\rightarrow \frac{10}{1} \times \frac{3}{5} = \frac{30}{5} \rightarrow 6$
7 $\rightarrow \frac{7}{1} \times \frac{4}{6} = \frac{28}{6} \rightarrow 44/6 = 42/3$

20.) Each member of a relay team runs ½ of the track. If there are 6 members in the relay, how many laps do they run altogether? Ć

$$5 \rightarrow {}^6/_1$$
 ${}^1/_2 \times {}^6/_1 = {}^6/_2 \rightarrow 3$ laps altogether

21.) At the first basketball game, the band sold 30 pizzas. At the second game, they sold $\frac{5}{6}$ more pizza than that they sold at the first game. How much more pizza did they sell at the second game?

$30 \rightarrow \frac{30}{1}$ $\frac{30}{1} \times \frac{5}{6} = \frac{150}{6} \rightarrow 25$ more pizzas are sold the 2nd game; 55 total pizzas were sold during the 2nd game

22.) Julie lost $\frac{9}{16}$ of a pound the first week of her diet. After a month she lost altogether 12 times as many pounds that she lost the first week. How many pounds has she lost?

$$12 \rightarrow \frac{12}{1}$$
 $\frac{12}{1} \times \frac{9}{16} = \frac{108}{16} \rightarrow \frac{6}{12}_{16} \rightarrow \frac{6}{12}_{16} \rightarrow \frac{6}{12}_{16}$ pounds

23.) Omari had 44 baseball cards. He gave away $\frac{1}{4}$ of them. How many cards did he have left?

$$\begin{array}{ll} 44 \rightarrow {}^{44}/_1 & {}^{44}/_1 \times {}^{1}/_4 = {}^{44}/_4 \rightarrow 11 \text{ cards given away} \\ & 44 \text{ original cards} - 11 \text{ given away} = 33 \text{ cards left} \end{array}$$

24.) Oscar saved \$360 mowing lawns one summer. He spent a third of that money on an ipod. He then earned an additional \$50 babysitting. How much money does he have now?

 $360 \rightarrow 360/_1$, a third $\rightarrow 1/_3$ $360/_1 \times 1/_3 = 360/_3 \rightarrow 120$ spent on ipod (\$360 - \$120) + \$ 50 = \$ 290

25.)Solve:

c. Write 2 equivalent fractions for $\frac{3}{7}$. (answers will vary)

V. Spiral Review...be sure you can

identify place value, determine the value of digit in a given number, estimate, perform multi-digit multiplication, and long division, etc.....

Show your work. You can also do Mega-Math, LearnZillion, or other math programs.